Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble.
نویسندگان
چکیده
Although engineering of transcription factors and DNA-modifying enzymes has drawn substantial attention for artificial gene regulation and genome editing, most efforts focus on affinity and specificity of the DNA-binding proteins, typically overlooking the kinetic properties of these proteins. However, a simplistic pursuit of high affinity can lead to kinetically deficient proteins that spend too much time at nonspecific sites before reaching their targets on DNA. We demonstrate that structural dynamic knowledge of the DNA-scanning process allows for kinetically and thermodynamically balanced engineering of DNA-binding proteins. Our current study of the zinc-finger protein Egr-1 (also known as Zif268) and its nuclease derivatives reveals kinetic and thermodynamic roles of the dynamic conformational equilibrium between two modes during the DNA-scanning process: one mode suitable for search and the other for recognition. By mutagenesis, we were able to shift this equilibrium, as confirmed by NMR spectroscopy. Using fluorescence and biochemical assays as well as computational simulations, we analyzed how the shifts of the conformational equilibrium influence binding affinity, target search kinetics, and efficiency in displacing other proteins from the target sites. A shift toward the recognition mode caused an increase in affinity for DNA and a decrease in search efficiency. In contrast, a shift toward the search mode caused a decrease in affinity and an increase in search efficiency. This accelerated site-specific DNA cleavage by the zinc-finger nuclease, without enhancing off-target cleavage. Our study shows that appropriate modulation of the dynamic conformational ensemble can greatly improve zinc-finger technology, which has used Egr-1 (Zif268) as a major scaffold for engineering.
منابع مشابه
Cooperativity and specificity of Cys2His2 zinc finger protein-DNA interactions: a molecular dynamics simulation study.
Cys(2)His(2) zinc finger proteins are one of the most frequently observed DNA-binding motifs in eukaryotes. They have been widely used as a framework for designing new DNA-binding proteins. In this work, the binding affinity and conformational change of the Zif268-DNA complex were successfully reproduced with MD simulations and MM-PBSA analysis. The following new discoveries on the zinc finger ...
متن کاملReduction in DNA-binding affinity of Cys2His2 zinc finger proteins by linker phosphorylation.
Cys(2)His(2) zinc finger proteins make up the largest class of transcription factors encoded in the genomes of higher eukaryotes. Recent studies of the Ikaros transcription factor demonstrated that this zinc finger protein undergoes cell cycle-dependent changes in association with DNA that seem to be due to phosphorylation of Thr or Ser residues in the linker regions connecting adjacent zinc fi...
متن کاملCorrelation between functional and binding activities of designer zinc-finger proteins.
Rapid progress in the ability to develop and utilize zinc-finger proteins with customized sequence specificity have led to their increasing use as tools for modulation of target gene transcription in the post-genomic era. In the present paper, a series of in vitro binding assays and in vivo reporter analyses were used to demonstrate that a zinc-finger protein can effectively specify a base at e...
متن کاملExtensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers
Sequence-specific DNA recognition by gene regulatory proteins is critical for proper cellular functioning. The ability to predict the DNA binding preferences of these regulatory proteins from their amino acid sequence would greatly aid in reconstruction of their regulatory interactions. Structural modeling provides one route to such predictions: by building accurate molecular models of regulato...
متن کاملPotential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins
Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 37 شماره
صفحات -
تاریخ انتشار 2015